Endogenous 5-HT, released by MDMA through serotonin transporter- and secretory vesicle-dependent mechanisms, reduces hippocampal excitatory synaptic transmission by preferential activation of 5-HT1B receptors located on CA1 pyramidal neurons
Mlinar B, Corradetti R.
Department of Preclinical and Clinical Pharmacology
'Mario Aiazzi-Mancini University of Florence,
Viale G. Pieraccini 6,
50139 Florence, Italy.
Eur J Neurosci. 2003 Sep;18(6):1559-71


A multitude of different serotonin (5-HT) receptor types are expressed in the hippocampus, but the identity of receptors actually mediating the physiological response to endogenous 5-HT has not been determined. We combined pharmacologically induced release of 5-HT with patch-clamp recordings on disinhibited rat CA1 minislices to determine effects of endogenous 5-HT on the excitability of pyramidal neurons and synaptic transmission among them. We found that application of 5-HT releasers, 3,4-methylenedioxy-methamphetamine (MDMA) or p-methylthioamphetamine, at concentrations ranging from 2 to 50 micro m, reduced the excitatory synaptic transmission between CA1 pyramidal neurons without altering their basal electrical properties. This effect of MDMA was blocked by the selective 5-HT1B antagonist GR 55562, was dependent on endogenous 5-HT content and was mediated by presynaptically located, pertussis-toxin sensitive mechanisms. We found no other MDMA effects in our preparation, which indicates that the release of endogenous 5-HT preferentially stimulates 5-HT1B receptors on CA1 pyramidal neurons. Therefore, 5-HT1B receptor activation may represent a predominant component of the physiological response to endogenous 5-HT in the CA1. The high sensitivity of the 5-HT1B receptor-mediated reduction of polysynaptic excitatory responses to the extracellular 5-HT level enabled us to study mechanisms of the 5-HT releasing action of MDMA. Block of the serotonin transporter (SERT) with citalopram slowed the time course and reduced overall 5-HT release by MDMA. Depletion of vesicular 5-HT, by inhibition of vesicular monoamine transporter type 2 with tetrabenazine prevented the release. Thus although the SERT reversal contributes, a direct vesicle-depleting action is essential for MDMA release of 5-HT.

Protect and survive
Ecstasy and tryptophan
Ecstasy and serotonin synthesis
Ecstasy and the serotonin receptors

and further reading

Future Opioids
BLTC Research
Utopian Surgery?
The Abolitionist Project
The Hedonistic Imperative
The Reproductive Revolution
Critique of Huxley's Brave New World

The Good Drug Guide
The Good Drug Guide

The Responsible Parent's Guide
To Healthy Mood Boosters For All The Family