Which neuroreceptors mediate the subjective effects
of MDMA in humans? A summary of mechanistic studies

Liechti ME, Vollenweider FX.
Clinical Research Unit,
University Hospital of Psychiatry,
Zurich, Switzerland.
Hum Psychopharmacol 2001 Dec;16(8):589-598


In preclinical studies, 3,4-methylenedioxymethamphetamine (MDMA, 'Ecstasy') has been shown to release serotonin (5-HT), dopamine and norepinephrine. However, the role of these neurotransmitters and their corresponding receptor sites in mediating the subjective effects of MDMA has not yet been studied in humans. Therefore, we investigated the effects of three different neuroreceptor pretreatments on the subjective, cardiovascular and adverse effects of MDMA (1.5 mg/kg orally) in 44 healthy human volunteers. Pretreatments were: the selective serotonin reuptake inhibitor citalopram (40 mg intravenously) in 16 subjects, the 5-HT(2) antagonist ketanserin (50 mg orally) in 14 subjects, and the D(2) antagonist haloperidol (1.4 mg intravenously) in 14 subjects. Each of these studies used a double-blind placebo-controlled within-subject design and all subjects were examined under placebo, pretreatment, MDMA and pretreatment plus MDMA conditions. Citalopram markedly reduced most of the subjective effects of MDMA, including positive mood, increased extraversion and self-confidence. Cardiovascular and adverse effects of MDMA were also attenuated by citalopram. Haloperidol selectively reduced MDMA-induced positive mood but had no effect on other subjective effects of MDMA or the cardiovascular or adverse responses to MDMA. Ketanserin selectively reduced MDMA-induced perceptual changes and emotional excitation. These results indicate that the overall psychological effects of MDMA largely depend on carrier-mediated 5-HT release, while the more stimulant-like euphoric mood effects of MDMA appear to relate, at least in part, to dopamine D(2) receptor stimulation. The mild hallucinogen-like perceptual effects of MDMA appear to be due to serotonergic 5-HT(2) receptor stimulation.

Protect and survive
Ecstasy and tryptophan
Ecstasy and serotonin synthesis
Ecstasy and serotonin 5-HT1b receptors

and further reading

Future Opioids
BLTC Research
Utopian Surgery?
The Abolitionist Project
The Hedonistic Imperative
The Reproductive Revolution
Critique of Huxley's Brave New World

The Good Drug Guide
The Good Drug Guide

The Responsible Parent's Guide
To Healthy Mood Boosters For All The Family