Metabolism Is Required for the Expression of
Ecstasy-Induced Cardiotoxicity in Vitro

Carvalho M, Remiao F, Milhazes N, Borges F,M
Fernandes E, Do Ceu Monteiro M, Goncalves MJ,
Seabra V, Amado F, Carvalho F, Bastos ML.
REQUIMTE, Servico de Toxicologia and Servico de Quimica Organica,
Faculdade de Farmacia, Universidade do Porto,
Rua Anibal Cunha, 164, 4099/030 Porto, Portugal,
Instituto Politecnico de Saude-Norte, R. Central da Gandra,
1317, Gandra, 4585/116 Paredes, Portugal,
Departamento de Quimica, Universidade de Aveiro,
3810/123 Aveiro, Portugal.
Chem Res Toxicol. 2004 May 17;17(5):623-632


Cardiovascular complications associated with 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) abuse have increasingly been reported. The indirect effect of MDMA mediated by a sustained high level of circulating biogenic amines may contribute to the cardiotoxic effects, but other factors, like the direct toxic effects of MDMA and its metabolites in cardiac cells, remain to be investigated. Thus, the objective of the present in vitro study was to evaluate the potential cardiotoxic effects of MDMA and its major metabolites 3,4-methylenedioxyamphetamine (MDA), N-methyl-alpha-methyldopamine (N-Me-alpha-MeDA), and alpha-methyldopamine (alpha-MeDA) using freshly isolated adult rat cardiomyocytes. The cell suspensions were incubated with these compounds in the final concentrations of 0.1, 0.2, 0.4, 0.8, and 1.6 mM for 4 h. alpha-MeDA, N-Me-alpha-MeDA, and their respective aminochromes (oxidation products) were quantified in cell suspensions by HPLC-DAD. The toxic effects were evaluated at hourly intervals for 4 h by measuring the percentage of cells with normal morphology, glutathione (GSH), and glutathione disulfide (GSSG); intracellular Ca(2+), ATP, and ADP; and the cellular activities of glutathione peroxidase, glutathione reductase, and glutathione-S-transferase. No toxic effects were found after exposure of rat cardiomyocytes to MDMA or MDA at any of the tested concentrations for 4 h. In contrast, their catechol metabolites N-Me-alpha-MeDA and alpha-MeDA induced significant toxicity in rat cardiomyocytes. The toxic effects were characterized by a loss of normal cell morphology, which was preceded by a loss of GSH homeostasis due to conjugation of GSH with N-Me-alpha-MeDA and alpha-MeDA, sustained increase of intracellular Ca(2+) levels, ATP depletion, and decreases in the antioxidant enzyme activities. The oxidation of N-Me-alpha-MeDA and alpha-MeDA into the toxic compounds N-methyl-alpha-methyldopaminochrome and alpha-methyldopaminochrome, respectively, was also verified in cell suspensions incubated with these MDMA metabolites. The results obtained in this study provide evidence that the metabolism of MDMA into N-Me-alpha-MeDA and alpha-MeDA is required for the expression of MDMA-induced cardiotoxicity in vitro, being N-Me-alpha-MeDA the most toxic of the studied metabolites.

Protect and survive
Ecstasy and the heart
Atrial fibrillation after MDMA use

and further reading

Future Opioids
BLTC Research
Utopian Surgery?
The Abolitionist Project
The Hedonistic Imperative
The Reproductive Revolution
Critique of Huxley's Brave New World

The Good Drug Guide
The Good Drug Guide

The Responsible Parent's Guide
To Healthy Mood Boosters For All The Family