Behavioral and Neurochemical Consequences of Long-Term Intravenous Self-Administration of MDMA and Its Enantiomers by Rhesus Monkeys
Fantegrossi WE, Woolverton WL, Kilbourn M, Sherman P, Yuan J, Hatzidimitriou G, Ricaurte GA, Woods JH, Winger G.
[1] 1Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA [2] 2Cyclotron/PET Facility, Division of Nuclear Medicine, Department of Radiology, University of Michigan Medical School, Ann Arbor, MI, USA.
Neuropsychopharmacology. 2004 Feb 16


The effects of self-administered 3,4-methylenedioxymethamphetamine (MDMA) on behavior and neurochemistry have not been previously studied in laboratory primates. We investigated the capacity of MDMA and its enantiomers to maintain contingent responding over an extended duration, whether any decrements in the reinforcing effects of these compounds would be observed over time, whether such decrements would be MDMA-selective, and whether any neurochemical correlates could be identified. Animals were previously trained to self-administer cocaine, then exposed to periodic substitutions of various doses of racemic MDMA and its enantiomers; full dose-effect curves were generated for each MDMA compound repeatedly over the duration of the study. After approximately 18 months of MDMA self-administration, drug exposure was halted and after at least 2 months drug abstinence, animals were scanned using positron emission tomography (PET) with the vesicular monoamine transporter (VMAT) ligand dihydrotetrabenazine (DTBZ). Shortly thereafter, animals were euthanized, brains were dissected, and samples were assayed for brain monoamines and their metabolites using high-performance liquid chromatography (HPLC), and for VMAT using DTBZ binding. The reinforcing effects of racemic and R(-)-MDMA were reduced over a long series (months) of individual self-administration access periods; the reinforcing effects of S(+)-MDMA were more resistant to this effect, but were attenuated for one animal. The reinforcing effects of cocaine were not altered by chronic MDMA self-administration, nor was the VMAT binding potential as assessed by PET. Further, there were no measurable decrements in serotonin (5-HT), 5-hydroxyindoleacetic acid (5-HIAA), dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC) or VMAT in any brain regions assayed. The reinforcing effects of MDMA are selectively attenuated by chronic MDMA self-administration, although this behavioral change appears to occur in the absence of any frank neurochemical correlates of toxicity

Neuronal damage
Protect and survive
MDMA and immunity
Ecstasy and mental disorders
Ecstasy and serotonin synthesis
Psychiatric disorders in Ecstasy users
Serotonin, noradrenline and dopamine

and further reading

Future Opioids
BLTC Research
Utopian Surgery?
The Abolitionist Project
The Hedonistic Imperative
The Reproductive Revolution
Critique of Huxley's Brave New World

The Good Drug Guide
The Good Drug Guide

The Responsible Parent's Guide
To Healthy Mood Boosters For All The Family