Further characterization of the stimulus properties
of 5,6,7,8-tetrahydro-1,3-dioxolo[4,5-g]isoquinoline

Glennon RA, Young R, Rangisetty JB.
Department of Medicinal Chemistry,
School of Pharmacy,
Virginia Commonwealth University,
Box 980540, 23298-0540, Richmond, VA, USA
Pharmacol Biochem Behav 2002 May;72(1-2):379-87


This investigation is based on the premise that conformational restriction of abused phenylalkylamines in a tetrahydroisoquinoline conformation alters their pharmacology in such a manner that their original action is lost and that a new action emerges. TDIQ or 5,6,7,8-tetrahydro-1,3-dioxolo[4,5-g]isoquinoline, is a conformationally constrained phenylalkylamine that serves as a discriminative stimulus in animals. Although TDIQ bears structural resemblance to phenylalkylamine stimulants (e.g., amphetamine), hallucinogens (e.g., 1-(2,5-dimethoxy-4-methylphenyl)-2-aminopropane [DOM]), and designer drugs (e.g., N-methyl-1-(3,4-methylenedioxyphenyl)-2-aminopropane [MDMA], N-methyl-1-(4-methoxyphenyl)-2-aminopropane [PMMA]), the TDIQ stimulus failed to generalize to (+)amphetamine or MDMA. In the present investigation, further evaluations were made of the stimulus nature of TDIQ. Specifically, the stimulus similarities of TDIQ, PMMA, and DOM were examined. In no case was stimulus generalization (substitution) observed. The results confirm that TDIQ produces stimulus effects distinct from those of the abovementioned phenylalkylamines. We also examined the structure-activity relationships of a series of TDIQ analogs, including several that might be viewed as conformationally restricted (CR) analogs of phenylalkylamine hallucinogens, stimulants, and designer drugs. These agents were examined in rats trained to discriminate either DOM (1.0 mg/kg), (+)amphetamine (1.0 mg/kg), MDMA (1.5 mg/kg), or TDIQ (5.0 mg/kg) from saline vehicle. Whereas we have demonstrated that none of these agents retains their respective phenylalkylamine stimulus actions, several of these agents were found to substitute for TDIQ. N-Methylation abolished TDIQ-stimulus action. These results, coupled with previous findings, imply that TDIQ derivatives represent a novel class of phenylalkylamines analogs with unique stimulus properties. Preliminary radioligand binding studies suggest that an alpha(2)-adrenergic mechanism might underlie the stimulus effects produced by TDIQ.

Protect and survive
Ecstasy and tryptophan
Ecstasy and serotonin synthesis

and further reading

Future Opioids
BLTC Research
Utopian Surgery?
The Abolitionist Project
The Hedonistic Imperative
The Reproductive Revolution
Critique of Huxley's Brave New World

The Good Drug Guide
The Good Drug Guide

The Responsible Parent's Guide
To Healthy Mood Boosters For All The Family