Ecstasy induces apoptosis via 5-HT(2A)-receptor
stimulation in cortical neurons

by
Capela JP, Fernandes E, Remião F,
Bastos ML, Meisel A, Carvalho F.
REQUIMTE, Toxicology Department,
Faculty of Pharmacy, University of Porto,
Rua Aníbal Cunha 164, 4099/030 Porto, Portugal.
Neurotoxicology. 2007 Apr 27;


ABSTRACT

3,4-Methylenedioxymethamphetamine (MDMA or "Ecstasy") is a psychoactive and hallucinogenic drug of abuse. MDMA has been shown to produce neurotoxicity both in animals and humans. MDMA and other amphetamines induce serotonergic and dopaminergic terminal neurotoxicity and also neurodegeneration in areas including the cortex, hippocampus, striatum and thalamus. Herein, we investigated the mechanisms involved in MDMA-induced neurotoxicity to neuronal serum free cultures from rat cortex. The hyperthermic effect produced by MDMA has been shown to be a clinically relevant aspect for the neurotoxic events. Thus, MDMA-induced toxicity to cortical neurons was evaluated both under normothermic (36.5 degrees C) and hyperthermic (40 degrees C) conditions. Our findings showed that MDMA produced neuronal apoptosis, accompanied by activation of caspase 3, in a concentration dependent manner. MDMA neurotoxicity was completely prevented by pre-treatment with a 5-HT(2A)-receptor antibody, which acted as an "irreversible non-competitive antagonist" of this receptor. Furthermore, MDMA depleted intracellular glutathione (GSH) levels in a concentration dependent manner, an effect that was attenuated by Ketanserin, a competitive 5-HT(2A)-receptor antagonist. Accordingly, N-acetylcysteine, an antioxidant and GSH precursor, also reduced MDMA-induced toxicity. Specific inhibitors of the inducible and neuronal nitric oxide synthase (NOS) partially prevented MDMA neurotoxicity, ascertaining the involvement of reactive nitrogen species, in the toxic effect. In conclusion, direct MDMA 5-HT(2A)-receptor stimulation produces intracellular oxidative stress that leads to neuronal apoptosis accompanied by caspase 3 activation.

5-HT2a
Club drugs
Abstinence
Parkinson's?
Liver failure
Hyperthermia
Brain damage?
Kidney damage
Malonate/toxicity
Deaths in New York
Spatial memory deficits?
Long-term brain damage?
Toxic metabolites of MDMA?
MDMA and sympathetic activity
Electrophysiological evidence of 5-HT damage
5-HT, 5-HIAA, norepinephrine, epinephrine and dopamine


Refs
and further reading

HOME
HedWeb
Nootropics
erythroxylum-coca.com
Future Opioids
BLTC Research
MDMA/Ecstasy
Superhapiness?
Utopian Surgery?
The Abolitionist Project
The Hedonistic Imperative
The Reproductive Revolution
Critique of Huxley's Brave New World

The Good Drug Guide
The Good Drug Guide

The Responsible Parent's Guide
To Healthy Mood Boosters For All The Family